
Postgresql and The Strong 
Anthropic Principle of 

Cosmology
Mayuresh

mayur555b@gmail.com



Postgresql and The Strong Anthropic Principle.

A database comedy or philosophy – Mayur, DBA@WISE



cogito ergo mundus talis est. – Descartes



“I think, therefore the world is as it is.”
PostgreSQL reminded me of the strong anthropic 
principle in cosmology. The strong anthropic principle 
says the Universe has these conditions because it must 
have them in order to have intelligent life (us). 
Hence, our existence is the end goal of a plan. The 
strong form of the anthropic principle insists that we 
are special, an intellectual center of the Universe 
(all intelligent species would be at their “center”), 
because we exist and think. 



THOU SHALT NOT HINT
Yes, rest of the industry should bend the knee. 
Data pattern, data velocity, data usage and 
statistics accuracy should always behave nice to 
avoid those naughty plan fluctuations.
This dogma against hints in PostgreSQL community 
fascinated me while transitioning from Oracle 
world. However, PostgreSQL triumphantly saves so 
much money compared to Oracle databases that 
those concerns fade into the background. 



“The Oracle, she told me that...” -- Neo 
My previous job was with a large company that had thousands of 
Oracle databases and ancient code maintained by dozens of 
vendors. Whenever DBAs suggest code changes, developers ask why 
we are so hostile to them. Hints were the generally accepted way 
to fix query performance issues because code/design changes would 
require several months of test cycles and bureaucratic approvals.

We had a policy to only provide hints that made business sense, 
for example in an OLTP with large concurrency you would provide 
nested loop hint along with index hint cause if only index hint 
was provided and planner used it but still picked hash join 
causing full scan of leading table then it would lead to an 
incident.



Brave New World
Wise started with a web page and a single database backend, 
like many companies. As we grew and the product became more 
advanced, it became obvious that coping with our growth 
would require a shift towards a microservice architecture. 
Microservice architecture provides agility for rolling out 
innovative products or capturing new geographies. To 
maintain autonomy of application development teams and 
achieve business domain level sharding our architects 
decided to provision a separate database for every 
micro-service. As a result, we have PostgreSQL and MariaDB 
spread out among our 500+ AWS RDS and a few dozen 
self-hosted databases.



A micro-service typically needs to update the database and 
send messages/events consumed by other micro-services. This 
can be achieved with the Transactional outbox pattern which 
is discussed in detail here.



Micro-service but macro problems
At first glance, it’s obvious that this will trouble PostgreSQL MVCC. Every 
transaction has a corresponding insert/update in the outbox, and the data 
volume continuously changes due to deletes based on polling frequency. Also 
table is continuously being read by a message relay. A perfect recipe for 
disaster as it generates many dead tuples and autoanalyze may collect stats 
when the outbox table is empty which results in subsequent full scans. Tiny 
RDS instances provisioned for micro-services hit Io/throughput/cpu limits 
quickly on the cloud. So you would have autovacuum playing catch up with DML 
rate on outbox tables hence accumulating dead tuples. You can make autovacuum 
more aggressive but that comes at the cost of instance throughput and CPU 
capacity. Even then, with many such full scan queries running on a bloated 
outbox table, the database would be overloaded. A simple index hint via 
pg_hint_plan on the outbox table’s queries saves on-call DBAs sleep hours. 



Database statistics bias
● Table has 10 million records.

It really does.

● However, database thinks it is empty.

● Database executes sequential scan for 
any query done against that table.

● Database I/O meanwhile:

outgoing_message_0_0



Postgres and dead tuples
● Table has 1 record.

● We query all records from that table.

● Somehow IO equivalent 10 million records happens.
And finally, 1 minute later, 1 record is returned.

● Database CPU and I/O, meanwhile: 

outgoing_message_0_0



Savior of dba sleep cycle









Evolve
pg_hint_plan works better than MariaDB/MySQL 
hints on some complex queries and delete queries. 
A simple index hint can save on-call DBAs sleep 
hours. We have already seen a real-life 
illustration of how modern architectural changes 
in application development are driving database 
engineers to evolve and grow beyond the strict 
dogmas.



References
Pg_hint_plan https://github.com/ossc-db/pg_hint_plan/tree/master

Micro-services
https://microservices.io/patterns/data/transactional-outbox.html

The Anthropic principle
https://ned.ipac.caltech.edu/level5/Peacock/Peacock3_5.html



Common pitfalls when 
demoralizing in PostgreSQL

Gilad Kleinman
gilad@epsio.io



Common Pitfalls When Demoralizing



Pitfall #1 – Missing new data



Pitfall #2 – performance issues due to UPDATE locks



Pitfall #3 – deadlocks due to UPDATE locks



Pitfall #4 – Missing internal consistency



Ein Märchen
Hans Schönig

hs@cybertec.at



EIN MÄRCHEN



“Database-itchen und die 7 Server”

www.cybertec-postgresql.com



Es waren einmal 7 Server 
in einem Data Center

www.cybertec-postgresql.com



Die 7 Server waren sehr 
unglücklich, weil der 

böse Wolf Ihr
Geld stehlen wollte

www.cybertec-postgresql.com



Und so saßen die 7 Server 
in Ihrem Rechenzentrum

und waren sehr sehr 
traurig,

weil Sie in Ihrem 
goldenen Rack 

eingesperrt waren
www.cybertec-postgresql.com



Eines Tages kam 
Databaseitchen in das Data 

Center
und sah die traurigen 

Server

www.cybertec-postgresql.com



“Wieso seid Ihr so traurig”
fragte Databaseitchen die 7 Server

www.cybertec-postgresql.com



“Weil der böse Wolf dauernd an unser Gold will”
jammerten die 7 kleinen Server

www.cybertec-postgresql.com



Databaseitchen war sehr traurig und sagte …

www.cybertec-postgresql.com



“Warum macht ihr nicht mal einen Tag blau?”

www.cybertec-postgresql.com



Die 7 kleinen Server schauten sich an und sagten zu sich
“Wieso nicht?”

www.cybertec-postgresql.com



Schnell riefen Sie Ihren 
Freund 

etcd 
an und schon hatten Sie 

eine Mehrheit

www.cybertec-postgresql.com



Und schwups kopierten die 7 kleinen Server
die Daten mit dem

graphischen Migrator

www.cybertec-postgresql.com



Und wenn sie nicht 
rebootet haben, so 

laufen Sie heute noch

www.cybertec-postgresql.com



Maxing out 
max_parallel_workers

James Guthrie
james@guthrie.ch





















pg_replication_slot_advance 
with 'skip'
Patrick Stählin

me@packi.ch



Cloud and I/O: 
going full circle

Frits Hoogland
@fritshoogland


