
© 2024 All Rights Reserved

1

Indexing Beyond Columns:
Expressions, Text Fragments, JSON
Attributes, and Top-N Queries

Franck Pachot, Developer Advocate

@FranckPachot

© 2024 All Rights Reserved

2

What are you indexing?

© 2024 All Rights Reserved

When was CREATE INDEX introduced in the SQL Standard?

3

CREATE INDEX is not SQL

CREATE INDEX is not SQL
(SQL is a query language and

you don't query indexes)

© 2024 All Rights Reserved

This old idea of indexing columns

4

© 2024 All Rights Reserved

You don't index columns, but predicate values to find rows from one table

5

An optimal index access uses one index per table
- better use one index with many columns than two index on one column

WHERE predicates can filter on a prefix, or case insensitive, a hash value
- better index the searched value rather than the stored value

Think of indexes as redundant storage organized like your query result

Example: list all orders shipped within 1 day, in France, Top-10 by amount

 create index (trunc(ship_date-order_date)
 , initcap(country) , amount desc)

© 2024 All Rights Reserved

Indexes are redundant storage organized for your queries on a table

6

Indexes are maintained when table is updated
- Sorted on a key (the order of columns, binary values)
- May be partitioned (local index on partitioned table)
- May index a subset of rows (partial indexes)
- May include more columns (not sorted, just to filter or fetch them)

Indexes are used transparently in queries
- to find one point (row) or range (rows) or multiple ranges (loose index scan)
- to read the rows in a specific order (to avoid further sorting)
- to read a smaller structure (not all the table columns)

© 2024 All Rights Reserved

7

Partial indexes

© 2024 All Rights Reserved

You don't need to index all table rows

8

Example: table orders (id uuid, processed boolean)
The many processed orders a kept for analytic queries

- no need to index 98% or rows with processed=true

The few unprocessed orders are selected to be processed

- useful to index 2% of rows with processed=false

create index orders_to_process
 on orders (id) where not processed

The cost of maintaining indexes is divided by 2, and it is cache efficient

© 2024 All Rights Reserved

When partial index is not supported

9

Oracle: no partial index

 but null entries are not indexed

create index orders_to_process
 on orders ((case when not processed then id end))

You must use the same expression in SELECT

 - or use a view / virtual columns

Or use partitioning and partial indexes

© 2024 All Rights Reserved

10

Covering indexes

© 2024 All Rights Reserved

Index Access to a Table is a Nested Loop Join

11

Forget about O(logN) time complexity of B-Tree indexes

What takes long is fetching the rows scattered in the table from the index

create table orders (country, order_date, product);
create index order_country on orders (country);
select * from orders where country='France'
 and order_date > now()-interval'1 day';

This will fetch all orders from France, scattered on disk (entered through

years), to finally discard most of them

© 2024 All Rights Reserved

Avoid to read many rows from the table and discard them later

12

Indexes should cover the most selective predicates to avoid unnecessary

hops to the table

create index order_by_country_and_date
 on orders (country, order_date);
select * from orders where country='France'
 and order_date > now()-interval'1 day';

This will filter before going to the table,

 fetching only the rows needed for the result

© 2024 All Rights Reserved

What is a covering index?

13

There's no universal covering index

An index may be covering for a query

- covering the filtering (WHERE)

- covering the sorting (ORDER BY)

- covering the projection (SELECT)

It can cover more columns by

- adding them at the end of the index key

- adding them in INCLUDE if they don't need to be sorted on it

© 2024 All Rights Reserved

What about Index Only Scan?

14

🅾 Oracle: you see fully covering index by the absence of

 TABLE ACCESS BY ROWID

🐘 PostgreSQL: you see fully covering index by the presence of

 Index Only Scan
and Heap Fetches: 0 (needs fresh vacuum to update visibility map)

▝▞ YugabyteDB: like PostgreSQL but no need for vacuum

© 2024 All Rights Reserved

15

Order preserving indexes

© 2024 All Rights Reserved

Indexes are physically ordered

16

List the Top-10 orders by amount of the past year

You don't want to:

 read 1 million order, sort them, display the first 10 ones

You want to:

 read the orders in amount descending order, and stop at ten

 create index ... on (order_year desc, amount desc)

© 2024 All Rights Reserved

When you look at an execution plan

17

Anti-pattern:

 read many rows and discard them later

What you want: read only the rows that you will need in the result

Indexes should be used to:

 - access directly to highly selective predicate result

 - get rows in the order expected for the result

 - avoid going to the table for many rows

© 2024 All Rights Reserved

18

Expressions-based indexes

© 2024 All Rights Reserved

You don't index the columns, but the expressions you filter on

19

If you apply a function to the column, it changes the order

and index cannot be used.

Example: uppercase(name) cannot use an index on name

But you can index the result of the function or expression

Example: index the distance duration by indexing (end_date-start_date)

⚠the function must be deterministic / immutable

© 2024 All Rights Reserved

Deterministic functions

20

The indexed expression must be always the same for the same row values

You cannot index age() as now()-birth_date
You cannot index to_char(date) as it depends on the locale context

You can create your deterministic/immutable function

 but if you lied to the database, you will get corrupted results

© 2024 All Rights Reserved

21

Text-search indexes

© 2024 All Rights Reserved

Example: The first name starts with 'xyz'. Or name ~ 'Dupon[td]'

An index is sorted. You can find the prefix, and then filter without going to

the table. create index on ... (name)

For large columns, some databases can use on(substr(name,1,5))

LIKE 'prefix%'

22

© 2024 All Rights Reserved

Example: The name ends with 'xyz'.

create index on ... (reverse(name))

Query it with select
 where reverse(name) like reverse('%xyz')

PostgreSQL plvstr.rvrs() (from orafce) is faster than reverse()

LIKE '%suffix'

23

© 2024 All Rights Reserved

Example: There is 'xyz' in the middle.

PostgreSQL or YugabyteDB:

create extension if not exists pg_trgm;
create index on ... using gin on (name gin_trgm_ops)

It indexes trigrams (all 3-consecutive characters combinations)

It searches for those ' x', ' xy', 'xyz', 'yz ', ' z'

GIN indexes can have multiple index entries for one rows (fragments)

LIKE '%middle%'

24

© 2024 All Rights Reserved

With embeddings and vector search (pg_vector in PostgreSQL and

YugabyteDB) you can use LLM (Large Language Model) to find possible

matching text (vector distance)

Be careful: non-deterministic, hallucinations,...

Vectors

25

© 2024 All Rights Reserved

26

JSON/JSONB indexing

© 2024 All Rights Reserved

For a single value per row, regular indexes can be used

because the path is an expression

Example: create index on ... ((data->document->>name))

For arrays you need one index per item:

 create index on ((data->versions->0->>name))
 create index on ((data->versions->1->>name))
 create index on ((data->versions->2->>name))

Indexing a single path within JSON

27

© 2024 All Rights Reserved

An array can have many values, GIN index can index many values

Example: create index on ...
 using gin (data->versions jsonb_path_ops)

This indexes all values in a subdocument, to be queried with

 @> contains examples: @>'[1,3]' or @>'{"tag":"Devoxx"}'

 @? json path item exists? example: @? '$.tags[*] ? (@ == "qui")'

 @@ json path return first item example: @? '$.tags[*] ? '$.tags[*] ==
"qui"'

Indexing paths through arrays within JSONB in PostgreSQL

28

© 2024 All Rights Reserved

The non-default jsonb_path_ops

 indexes for @> , @? , @@ , when knowing the key where we look for

The default jsonb_ops

Example: create index on ... using gin (data jsonb_ops)

This indexes all keys in a document, to be queried with @>, @?, @@ plus:

 ? exists one (key or array element) examples: ? 'tag' or ? 'PostgreSQL'

 ?| exists any example: tags ?| array['PostgreSQL','YugabyteDB']

 ?& exists all example: tags ?& array['Distributed','PostgreSQL']

Indexing all keys and values within JSONB in PostgreSQL

29

© 2024 All Rights Reserved

30

Top-N and Pagination

© 2024 All Rights Reserved

Top-N: read the first rows only, from the beginning (or end) of the index

Pagination: read rows from the last value that was read

💡look at the execution plan for the absence of Sort

The index starts with columns to filter

 on equality, then range if same column as order by

 create index ... on (country asc, name desc)

select ... where country='FR' and name>'LastRetreived'
 order by name limit 10

Top-N queries and pagination without sorting all rows

31

© 2024 All Rights Reserved

32

Min/Max, distinct on, and Loose Index Scan

© 2024 All Rights Reserved

Min/Max optimisation

33

Easy to get the lowest or greatest value for an index:

 the first or last entry

 create index...on (score desc, name asc)
 select min(score), max(score)

In the execution plan: Index Scan or Index Scan Backward
 - B-Tree have 2-way links between leaves: same performance

 - LSM-Tree may need more key comparisons for backward scan

© 2024 All Rights Reserved

- Latest measure for each metric in a timeseries database

- Last contract with each supplier

- First purchase from each client

- Employee with the lowest salary in each department

- Lowest value for each sample taken at one time

 create index...on (metric, time desc) include (value)

it is like a Min/max for each group

First Row of Each Set of Grouped Rows Using GROUP BY

34

© 2024 All Rights Reserved

 create index ... on (metric, time desc) include (value)

Those work in PostgreSQL but are not efficient (reads all index entries):

 select distinct on (metric), value order by value asc;

select (
 row_number() over (partition by metric order by value asc)
) as r ... where r=1 ;

Without Loose Index Scan

35

© 2024 All Rights Reserved

 create index ... on (metric, time desc) include (value)

 with recursive R as (
 select * from metrics
 order by metric, time limit 1
 union all
 select * from R , lateral (
 select * from metrics where metric > R.metric
 order by metric, time limit 1
)
) select * from R

Simulate Loose Index Scan (PostgreSQL)

36

© 2024 All Rights Reserved

 create index ... on (metric, time desc) include (value)

Efficient when DISTINCT can skip through one Index Scan:

 with D as (
 select distinct metric from metrics
)
 select * from D , lateral (
 select * from metrics where metric = D.metric
 order by metric, time limit 1

With Loose Index Scan for DISTINCT (Timescale, YugabyteDB)

37

© 2024 All Rights Reserved

38

Fat indexes or Too many indexes

© 2024 All Rights Reserved

Think of an index as a materialized query on one table

39

CREATE INDEX parts are very similar to a single-table SELECT statement

create index on t
 (a, b, c asc, d) include (e) where (f)

is like:

select d, e from t
 where a=? and b=? and c<? and f
 order by c

© 2024 All Rights Reserved

You could create the ideal indexes for each query (one per table access)

But:

- they take space (on disk, in memory)

- they must be maintained on insert, delete, update

The ideal index serves multiple queries

- not defined per query but per access patterns (use cases)

- depends on your workload (fast ingest/update vs. query efficiency)

Fat Indexes but not too many

40

© 2024 All Rights Reserved

41

E-mail:
fpachot@yugabyte.com

Blogs:
dev.to/FranckPachot
blog.yugabyte.com/author/fpachot

Twitter:
@FranckPachot

Youtube:
youtube.pachot.net

LinkedIn:
www.linkedin.com/in/franckpachot

🚀Community Slack / Github:
www.yugabyte.com/community

https://www.yugabyte.com/blog/author/fpachot/
PostgreSQL Tips & Tricks

https://www.yugabyte.com/blog/author/fpachot/

