
Solving PostgreSQL connection scalability:
Insights from CERN’s GitLab Service

Maurizio De Giorgi, Ismael Posada Trobo

27th Jun 2024

Maurizio De Giorgi | Solving PostgreSQL connection scalability: Insights from CERN’s GitLab Service

Maurizio De Giorgi

➡ Senior Database Engineer at CERN since Sep 2020
➡ DB on Demand: Service Manager and DevOps
➡ Long career in many different roles, industry, markets with a

strong focus on databases and data stores
➡ Always looking at new technology, paradigms and trends

27th Jun 2024 2

Maurizio De Giorgi

maurizio.degiorgi@cern.ch

DB on Demand is hiring a early career technician!

https://www.linkedin.com/in/maurizio-de-giorgi-0410751
mailto:maurizio.degiorgi@cern.ch
https://cern.ch/it-da-db-2024-105-grae

Maurizio De Giorgi | Solving PostgreSQL connection scalability: Insights from CERN’s GitLab Service

Ismael Posada Trobo

➡ Enthusiast Cloud Engineer at CERN since 2014
➡ Version Control Systems Tech Lead and Engineering

Manager at CERN
➡ GitLab Contributor and member of the GitLab

Customer Advisory Board
➡ Author of several scientific papers
➡ Several years of experience in Cloud technologies,

fueled by a passion for technologies

27th Jun 2024 3

Ismael Posada Trobo

ismael.posada.trobo@cern.ch

https://www.linkedin.com/in/ismael-posada-trobo/
mailto:ismael.posada.trobo@cern.ch

• Established in 1954

• 23 Member states

• Our mission:

• Unveil how the universe
works and what it is made
of

• Provide a unique range of
particle accelerator
facilities to enable
research at the forefront
of the human knowledge

• Unite people from all over
the world to push the
frontiers of science and
technology

4Maurizio De Giorgi | Solving PostgreSQL connection scalability: Insights from CERN’s GitLab Service27th Jun 2024

The Large Hadron Collider

5

World’s largest particle accelerator
27 km (16.8 miles) ring of superconducting magnets

Magnets are cooled to -271.3°C (-456.34°F)
 a temperature colder than outer space

Particles circle the accelerator 11.245 times/s
reaching 99.9999991% the speed of light

Lead ion collisions create temperatures of 100 000x hotter than
the heart of the sun

Maurizio De Giorgi | Solving PostgreSQL connection scalability: Insights from CERN’s GitLab Service27th Jun 2024

The Worldwide LHC Computing Grid (WLCG)

Tier0:
Data reconstruction + Tape archival

+ data distribution to other tiers
~ 200 PB of data per year

6

1 PB of data per second
Only 1% is kept (events with

specific characteristics)

WLCG:
- 170 collaborating centers

- 36 countries
- Data analysis

Maurizio De Giorgi | Solving PostgreSQL connection scalability: Insights from CERN’s GitLab Service27th Jun 2024

• Oracle databases since 1982
• 105 Oracle databases
• More than 11.800 Oracle accounts
• RAC, Active Data Guard, OEM, RMAN…
• Complex environment
• Used by

• Administrative Information Services
• Engineering teams
• Accelerator and experiments

• Full DBA support
• ≈ 5PB of data

Databases at CERN: Oracle

7Maurizio De Giorgi | Solving PostgreSQL connection scalability: Insights from CERN’s GitLab Service27th Jun 2024

• Database On Demand (DBOD)

• DBaaS conceived in 2011
• User-managed MySQL, PostgreSQL, InfluxDB database instances
• Empowers users to be their own DBA
• Flexible architecture allowing to easily integrate other DBMS
• More than 1200 database server instances

• ≈600 MySQL, ≈400 PostgreSQL, ≈200 InfluxDB
• ≈150 TB of data

• A number of key database applications:
• DBOD own databases
• Authorization and authentication (SSO)
• Experiments (ATLAS, LHCb, etc.)
• WLCG File Transfer Service
• GitLab, Puppet, Foreman, Teigi (secrets)
• Openstack (nova, ironic)
• Security (some SOC apps)
• Indico, Zenodo, Jira, ServiceNow

Databases at CERN: DBOD

8Maurizio De Giorgi | Solving PostgreSQL connection scalability: Insights from CERN’s GitLab Service27th Jun 2024

9Maurizio De Giorgi | Solving PostgreSQL connection scalability: Insights from CERN’s GitLab Service27th Jun 2024

DBOD Architecture

• Complex DBaaS environment
• Integrated with CERN infrastructure
• Mostly open source
• Infrastructure as Code
• Deploy on VM/Bare Metal
• Systemd managed services
• NetApp Storage

• data/wals NFS volumes
• snapshot based backups

• EOS (EOS Open Storage)
• snapshots copy archive
• wals archive

DBOD Automation
Web automation

• Automated backup and recovery services
• Upgrade checker to enable self-service upgrades

• once errors and warnings in the report are fixed
• Management of configuration files
• Cloning
• Integrated monitoring
• Integrated upgrades

• Primary-replica upgrade logic

Ops automation
• Continuous validation of backups
• Instance and storage migration
• Automated replica provisioning
• Automated replication switchover
• Detection of idle instances
• Integrated password hash cracker

10Maurizio De Giorgi | Solving PostgreSQL connection scalability: Insights from CERN’s GitLab Service27th Jun 2024

1
1Maurizio De Giorgi | Solving PostgreSQL connection scalability: Insights from CERN’s GitLab Service27th Jun 2024

GitLab at CERN

• GitLab is considered an important piece
of the ecosystem at CERN

• Cloud Hybrid architecture, using the Helm
deployment since 2022 (was Omnibus).
• DBoD for databases
• CephFS for storage
• S3 for buckets

• Composed of:
• ~150k projects.
• 19k users.
• ~320k pipelines/month.
• Collaborators from all over the

world
• Almost all the software running our

complex infrastructure it is hosted on
GitLab

Let’s start from the beginning…

Maurizio De Giorgi | Solving PostgreSQL connection scalability: Insights from CERN’s GitLab Service27th Jun 2024 12

Agenda

13Maurizio De Giorgi | Solving PostgreSQL connection scalability: Insights from CERN’s GitLab Service27th Jun 2024

● An MVCC primer (boring things everyone knows but it is worth refreshing)

● (ACID) Transactions, Isolation, Concurrency, Serializable Snapshot Isolation

● Connection scalability (showing the problem and its causes)

● Benchmarking & bottleneck analysis

● Troubleshooting GitLab issues (talking about that time when we all had a lot of fun)

● The journey to enlightenment

● The joy of enlightenment

● The great effects of connection pooling on connection scalability

27th Jun 2024 - Swiss PGDay

A set of operations that transfers a database from one
correct state to another correct state (Consistency),

provided they are all completed or rolled back
(Atomicity) without interference from other

transactions (Isolation)

An ACID Transaction

14
Credits https://postgrespro.com/blog/pgsql/5967856

 1 2 3 4 5

insert delete update insertdelete

27th Jun 2024 - Swiss PGDay

Committed transactions must be durable, and
withstand a system crash, without being affected by

uncommitted transactions, the effects of which, should
be rolled back as if they never happened (Durability)

An ACID Transaction

15

C
R
A
S
H

Uncommitted
Transactions
Roll back

Committed
Transactions
Roll forward

Credits https://postgrespro.com/blog/pgsql/5967856

27th Jun 2024 - Swiss PGDay

What is the fundamental problem?

Providing concurrent data access and transaction
isolation for each database session, with reasonable

performance in a multi user environments, while
minimizing lock contention, so that reading never
blocks writing and writing never blocks reading

Transactions and Concurrency

16
Credits https://www.postgresql.org/docs/current/mvcc-intro.html

27th Jun 2024 - Swiss PGDay

What is the more commonly used solution for RDBMS?

Multi Version Concurrency Control

“Instead of updating data objects in-place1,

each update creates a new version of that data object,

such that concurrent readers can still see the old version

while the update transaction proceeds concurrently2”

Transactions and Concurrency

17
1 ...and store before images in rollback segments like oracle does
2 Credits Tobias Mühlbauer https://db.in.tum.de/~muehlbau/papers/mvcc.pdf

https://db.in.tum.de/~muehlbau/papers/mvcc.pdf

27th Jun 2024 - Swiss PGDay

How does it work?

It relies on Serializable Snapshot Isolation1,2

Each SQL statement sees a snapshot of data (a
database version) as it was some time ago,

regardless of the current state of the underlying data,
and consisting only of changes committed before it

was created

Multi Version Concurrency Control

18
1 2009, Cahill, Michael James http://hdl.handle.net/2123/5353
2 2012, Dan R. K. Ports, Kevin Grittner https://arxiv.org/pdf/1208.4179.pdf

http://hdl.handle.net/2123/5353
https://arxiv.org/pdf/1208.4179.pdf

27th Jun 2024 - Swiss PGDay

“All queries in PostgreSQL are performed with respect
to a snapshot, which is represented as the set of

transactions whose effects are visible in the snapshot.
Each tuple is tagged with the transaction ID of the

transaction that created it (xmin), and, if it has been
deleted or replaced with a new version, the

transaction that did so (xmax)”

Multi Version Concurrency Control

19
Credits Dan R. K. Ports, Kevin Grittner https://arxiv.org/pdf/1208.4179.pdf

https://arxiv.org/pdf/1208.4179.pdf

27th Jun 2024 - Swiss PGDay

Multi Version Concurrency Control

20
Credits Hironobu SUZUKI@InterDB https://www.interdb.jp/pg/pgsql05.html

https://www.interdb.jp/pg/pgsql05.html

27th Jun 2024 - Swiss PGDay

Multi Version Concurrency Control

21

txid
insert

txid
delete or update

or 0 (invalid)

tx command id
(starting from 0)

tuple id
itself or

new
version

Peeking relevant fields inside a heap tuple header

Credits Hironobu SUZUKI@InterDB https://www.interdb.jp/pg/pgsql05.html

https://www.interdb.jp/pg/pgsql05.html

27th Jun 2024 - Swiss PGDay

Multi Version Concurrency Control

22

initial tuple
inserted by

txid 199

Credits Hironobu SUZUKI@InterDB https://www.interdb.jp/pg/pgsql05.html

https://www.interdb.jp/pg/pgsql05.html

27th Jun 2024 - Swiss PGDay

Multi Version Concurrency Control

23

txid 200
starting
at T1

initial tuple
inserted by

txid 199

Credits Hironobu SUZUKI@InterDB https://www.interdb.jp/pg/pgsql05.html

https://www.interdb.jp/pg/pgsql05.html

27th Jun 2024 - Swiss PGDay

Multi Version Concurrency Control

24

txid 200
starting
at T1 txid 201

starting
at T2

initial tuple
inserted by

txid 199

Credits Hironobu SUZUKI@InterDB https://www.interdb.jp/pg/pgsql05.html

https://www.interdb.jp/pg/pgsql05.html

27th Jun 2024 - Swiss PGDay

Multi Version Concurrency Control

25

txid
insert

Credits Hironobu SUZUKI@InterDB https://www.interdb.jp/pg/pgsql05.html

https://www.interdb.jp/pg/pgsql05.html

27th Jun 2024 - Swiss PGDay

Multi Version Concurrency Control

26

txid
insert

txid
delete or
update

or 0 (invalid)

Credits Hironobu SUZUKI@InterDB https://www.interdb.jp/pg/pgsql05.html

https://www.interdb.jp/pg/pgsql05.html

27th Jun 2024 - Swiss PGDay

Multi Version Concurrency Control

27

txid
insert

txid
delete or
update

or 0 (invalid)

tx command
id

(starting
from 0)

Credits Hironobu SUZUKI@InterDB https://www.interdb.jp/pg/pgsql05.html

https://www.interdb.jp/pg/pgsql05.html

27th Jun 2024 - Swiss PGDay

Multi Version Concurrency Control

28

txid
insert

txid
delete or
update

or 0 (invalid)
tuple id
itself or

new
version

tx command
id

(starting
from 0)

Credits Hironobu SUZUKI@InterDB https://www.interdb.jp/pg/pgsql05.html

https://www.interdb.jp/pg/pgsql05.html

27th Jun 2024 - Swiss PGDay

Multi Version Concurrency Control

29

txid 200
starting
at T1

Snapshot 200:200: <200 visible, >=200 invisible
They can both see Tuple_1 (t_xmin=199)

txid 201
starting
at T2

initial tuple
inserted by

txid 199

Credits Hironobu SUZUKI@InterDB https://www.interdb.jp/pg/pgsql05.html

https://www.interdb.jp/pg/pgsql05.html

27th Jun 2024 - Swiss PGDay

Multi Version Concurrency Control

30

txid 200
starting
at T1 txid 201

starting
at T2

make tuple_1 dead
insert new version as

tuple_2

Snapshot 200:200: <200 visible, >=200 invisible
They can both see Tuple_1 (t_xmin=199)

initial tuple
inserted by

txid 199

Credits Hironobu SUZUKI@InterDB https://www.interdb.jp/pg/pgsql05.html

https://www.interdb.jp/pg/pgsql05.html

27th Jun 2024 - Swiss PGDay

Multi Version Concurrency Control

31

txid 200
starting
at T1 txid 201

starting
at T2

make tuple_1 dead
insert new version as

tuple_2

Snapshot 200:200: <200 visible, >=200 invisible
They can both see Tuple_1 (xmin=199)

Same as before (200:200:) but
txid 200 can see Tuple_2 (visibility check rules1,2)

initial tuple
inserted by

txid 199

1 https://www.interdb.jp/pg/pgsql05/06.html
2 https://www.interdb.jp/pg/pgsql05/07.html

https://www.interdb.jp/pg/pgsql05/06.html
https://www.interdb.jp/pg/pgsql05/07.html

27th Jun 2024 - Swiss PGDay

Multi Version Concurrency Control

32

txid 200
starting
at T1 txid 201

starting
at T2

make tuple_1 dead
insert new version as

tuple_2

Snapshot 200:200: <200 visible, >=200 invisible
They can both see Tuple_1 (xmin=199)

Same as before (200:200:) but
txid 200 can see Tuple_2 (visibility check rules1,2)

txid 201 can see Tuple_2, or not,
depending on ISOLATION level
READ COMMITTED by default

initial tuple
inserted by

txid 199

1 https://www.interdb.jp/pg/pgsql05/06.html
2 https://www.interdb.jp/pg/pgsql05/07.html

https://www.interdb.jp/pg/pgsql05/06.html
https://www.interdb.jp/pg/pgsql05/07.html

27th Jun 2024 - Swiss PGDay

READ COMMITTED isolation level, the transaction obtains a snapshot whenever an SQL command is
executed; otherwise (REPEATABLE READ or SERIALIZABLE), the transaction only gets a snapshot when
the first SQL command is executed

Multi Version Concurrency Control

33

xid min:xid max:[xip_list]

Credits Hironobu SUZUKI@InterDB https://www.interdb.jp/pg/pgsql05.html

https://www.interdb.jp/pg/pgsql05.html

27th Jun 2024 - Swiss PGDay

Multi Version Concurrency Control

34

not active<xmin, active if in xmin<=xip_list<xmax, not yet started >=xmax

xid min:xid max:[xip_list]

Credits Hironobu SUZUKI@InterDB https://www.interdb.jp/pg/pgsql05.html

https://www.interdb.jp/pg/pgsql05.html

27th Jun 2024 - Swiss PGDay

● An MVCC primer (boring things everyone knows but it is worth refreshing)

● (ACID) Transactions, Isolation, Concurrency, Serializable Snapshot Isolation

● Connection scalability (showing the problem and its causes)

● Benchmarking & bottleneck analysis

● Troubleshooting GitLab issues (talking about that time when we all had a lot of fun)

● The journey to enlightenment

● The joy of enlightenment

● The great effects of connection pooling on connection scalability

Agenda

35

27th Jun 2024 - Swiss PGDay

Connections scalability

36

Initialize pgbench data set

27th Jun 2024 - Swiss PGDay

Connections scalability

37

A simple 1st run with 20 pgbench clients, 1 thread, 100 trx/client

46:20=2.3 tps/client

27th Jun 2024 - Swiss PGDay

Connections scalability

38

A simple 2nd run with 100 pgbench clients, 4 threads, 100 trx/client

5 times more clients
3.87 times more tps
178:100=1.78 tps/client

vs
46:20=2.3 tps/client

27th Jun 2024 - Swiss PGDay

Connections scalability

39

A tpcb-like run with 100 pgbench clients, 4 threads, 100 trx/client

0.02 times less tps
174:100=1.74 tps/cl.

vs
178:100=1.78 tps/cl.

27th Jun 2024 - Swiss PGDay

Connections scalability

40

A tpcb-like run with 800 pgbench clients, 6 threads, 100 trx/client

Hardly any increment!

210:800=0.26 tps/cl.
3.8 sec avg latency!!!

27th Jun 2024 - Swiss PGDay

What is the bottleneck?

Connections scalability

41

27th Jun 2024 - Swiss PGDay

What is the bottleneck?

Connections scalability

42

“Postgres uses a process forking model to handle concurrency
instead of threading. When it accepts a new connection, the
Postmaster forks a new backend (in postmaster.c). Backends are
represented by the PGPROC structure (in proc.h), and the entire
set of active processes is tracked in shared memory”

Credits Brandur, https://brandur.org/postgres-atomicity#shared-memory

https://github.com/postgres/postgres/blob/b35006ecccf505d05fd77ce0c820943996ad7ee9/src/backend/postmaster/postmaster.c#L4014
https://github.com/postgres/postgres/blob/b35006ecccf505d05fd77ce0c820943996ad7ee9/src/include/storage/proc.h#L94
https://brandur.org/postgres-atomicity#shared-memory

27th Jun 2024 - Swiss PGDay

Connections scalability
What is the bottleneck?

43
Credits Andres Freund@MS http://cern.ch/go/9WRh

Profile of one active connection running read-only pgbench concurrently with 5000 idle connections

http://cern.ch/go/9WRh

27th Jun 2024 - Swiss PGDay

Connections scalability
What is the bottleneck?

44
Credits Andres Freund@MS http://cern.ch/go/9WRh

Profile of one active connection running read-only pgbench concurrently with 5000 idle connections

Snapshot scalability!

http://cern.ch/go/9WRh

27th Jun 2024 - Swiss PGDay

Connections scalability

45

The xip array
contains all the XIDs
running at the time
the snapshot was

taken

27th Jun 2024 - Swiss PGDay

Connections scalability

46

Every
connection

has one
PGXACT
entry in

allPgXact
array

27th Jun 2024 - Swiss PGDay

Connections scalability

47

Every backend is
represented by
one PGPROC

entry
in the shared mem

ProcArray

pgprocnos
sorted array of
all connections,

each item contains
the index to the
corresponding
PGXACT entry

in the shared mem
allPgXact

27th Jun 2024 - Swiss PGDay

Connections scalability

48

GetSnapshotData() iterates over all entries in pgprocnos (ProcArray),
collecting PGXACT->xid for all connections with an assigned transaction ID

Credits Andres Freund@MS http://cern.ch/go/9WRh

http://cern.ch/go/9WRh

27th Jun 2024 - Swiss PGDay

Connections scalability

49

While holding a lock!

27th Jun 2024 - Swiss PGDay

● An MVCC primer (boring things everyone knows but it is worth refreshing)

● (ACID) Transactions, Isolation, Concurrency, Serializable Snapshot Isolation

● Connection scalability (showing the problem and its causes)

● Benchmarking & bottleneck analysis

● Troubleshooting GitLab issues (talking about that time when we all had a lot of fun)

● The journey to enlightenment

● The joy of enlightenment

● The great effects of connection pooling on connection scalability

Agenda

50

27th Jun 2024 - Swiss PGDay

Troubleshooting GitLab issues

51

log_min_messages=warning
log_min_error_statement=error
log_min_duration_statement=10000
log_statement=all

27th Jun 2024 - Swiss PGDay

Troubleshooting GitLab issues

52

Upgrading to latest major and/or minor
version that you can afford, depending on
your circumstances, is a good practice to
deal with bugs and security fixes

27th Jun 2024 - Swiss PGDay

21 Apr 2022 bug in pg12.5 upgrade to 12.10
Troubleshooting GitLab issues

53

pg_stat_[all|user]_tables:
last_[auto]vacuum, last_[auto]analyze,
[auto]vacuum_count, [auto]analyze_count

log_autovacuum_min_duration=0
autovacuum_[analyze|vacuum]_scale_factor=0.05
track_activity_query_size=4096

27th Jun 2024 - Swiss PGDay

The first clues
Troubleshooting GitLab issues

54

log_[dis]connections=on
log_min_duration_statement=10000|0
[log_duration=on]

27th Jun 2024 - Swiss PGDay

21 Apr 2022 bug in pg12.5 upgrade to 12.10
Troubleshooting GitLab issues

55

pg_statio_all_indexes: idx_blks_read, idx_blks_hit
pg_stat_all_indexes: idx_scan, last_idx_scan

27th Jun 2024 - Swiss PGDay

21 Apr 2022 bug in pg12.5 upgrade to 12.10
Troubleshooting GitLab issues

56

27th Jun 2024 - Swiss PGDay

21 Apr 2022 bug in pg12.5 upgrade to 12.10
Troubleshooting GitLab issues

57
https://docs.gitlab.com/ee/administration/reference_architectures/index.html

27th Jun 2024 - Swiss PGDay

21 Apr 2022 bug in pg12.5 upgrade to 12.10
Troubleshooting GitLab issues

58

27th Jun 2024 - Swiss PGDay

21 Apr 2022 bug in pg12.5 upgrade to 12.10
Troubleshooting GitLab issues

59

27th Jun 2024 - Swiss PGDay

21 Apr 2022 bug in pg12.5 upgrade to 12.10
Troubleshooting GitLab issues

60

27th Jun 2024 - Swiss PGDay

21 Apr 2022 bug in pg12.5 upgrade to 12.10
Troubleshooting GitLab issues

61

27th Jun 2024 - Swiss PGDay

21 Apr 2022 bug in pg12.5 upgrade to 12.10
Troubleshooting GitLab issues

62

27th Jun 2024 - Swiss PGDay

21 Apr 2022 bug in pg12.5 upgrade to 12.10
Troubleshooting GitLab issues

63

27th Jun 2024 - Swiss PGDay

Back to square one... looking for a culprit
Troubleshooting GitLab issues

64

[2022-09-26 16:03:36.187 CEST][PID:163179][SID:6331b104.27d6b][DB:] LOG: automatic analyze of table "gitlab.public.project_authorizations" system
usage: CPU: user: 0.35 s, system: 0.44 s, elapsed: 47.54 s
[2022-09-26 16:04:06.221 CEST][PID:163566][SID:6331b14f.27eee][DB:] LOG: automatic analyze of table "gitlab.public.namespaces" system usage: CPU:
user: 0.50 s, system: 0.06 s, elapsed: 5.82 s
[2022-09-26 16:04:11.891 CEST][PID:163602][SID:6331b150.27f12][DB:gitlab] LOG: duration: 10063.487 ms bind <unnamed>:
/*application:web,correlation_id:01GDX1S9VENZ19H288EKTR10R5,db_config_name:main*/

log_autovacuum_min_duration=0
autovacuum_[analyze|vacuum]_scale_factor=0.01
autovacuum_freeze_max_age=10000000
track_activity_query_size=4096

27th Jun 2024 - Swiss PGDay

Back to square one... looking for a culprit
Troubleshooting GitLab issues

65

[2022-09-26 16:03:36.187 CEST][PID:163179][SID:6331b104.27d6b][DB:] LOG: automatic analyze of table "gitlab.public.project_authorizations" system
usage: CPU: user: 0.35 s, system: 0.44 s, elapsed: 47.54 s
[2022-09-26 16:04:06.221 CEST][PID:163566][SID:6331b14f.27eee][DB:] LOG: automatic analyze of table "gitlab.public.namespaces" system usage: CPU:
user: 0.50 s, system: 0.06 s, elapsed: 5.82 s
[2022-09-26 16:04:11.891 CEST][PID:163602][SID:6331b150.27f12][DB:gitlab] LOG: duration: 10063.487 ms bind <unnamed>:
/*application:web,correlation_id:01GDX1S9VENZ19H288EKTR10R5,db_config_name:main*/

log_lock_waits=on sessions blocked for >=deadlock_timeout=1000ms
Found multiple sessions blocking each other (for more
than 1s) mostly trying to execute UPDATEs on the same
table recorded during some spikes

27th Jun 2024 - Swiss PGDay

Back to square one... looking for a culprit
Troubleshooting GitLab issues

66

[2022-09-26 16:03:36.187 CEST][PID:163179][SID:6331b104.27d6b][DB:] LOG: automatic analyze of table "gitlab.public.project_authorizations" system
usage: CPU: user: 0.35 s, system: 0.44 s, elapsed: 47.54 s
[2022-09-26 16:04:06.221 CEST][PID:163566][SID:6331b14f.27eee][DB:] LOG: automatic analyze of table "gitlab.public.namespaces" system usage: CPU:
user: 0.50 s, system: 0.06 s, elapsed: 5.82 s
[2022-09-26 16:04:11.891 CEST][PID:163602][SID:6331b150.27f12][DB:gitlab] LOG: duration: 10063.487 ms bind <unnamed>:
/*application:web,correlation_id:01GDX1S9VENZ19H288EKTR10R5,db_config_name:main*/

27th Jun 2024 - Swiss PGDay

Back to square one... looking for a culprit
Troubleshooting GitLab issues

67

[2022-09-26 16:03:36.187 CEST][PID:163179][SID:6331b104.27d6b][DB:] LOG: automatic analyze of table "gitlab.public.project_authorizations" system
usage: CPU: user: 0.35 s, system: 0.44 s, elapsed: 47.54 s
[2022-09-26 16:04:06.221 CEST][PID:163566][SID:6331b14f.27eee][DB:] LOG: automatic analyze of table "gitlab.public.namespaces" system usage: CPU:
user: 0.50 s, system: 0.06 s, elapsed: 5.82 s
[2022-09-26 16:04:11.891 CEST][PID:163602][SID:6331b150.27f12][DB:gitlab] LOG: duration: 10063.487 ms bind <unnamed>:
/*application:web,correlation_id:01GDX1S9VENZ19H288EKTR10R5,db_config_name:main*/

fio benchmarking: https://docs.gitlab.com/ee/administration/operations/filesystem_benchmarking.html

fio --randrepeat=1 --ioengine=libaio --direct=1 --gtod_reduce=1 --name=test --bs=4k --iodepth=64 --readwrite=randrw
--rwmixread=75 --size=4G --filename=/path/to/git-data/testfile

Database host
Run status group 0 (all jobs):
 READ: bw=194MiB/s (203MB/s), 194MiB/s-194MiB/s (203MB/s-203MB/s), io=3068MiB (3217MB), run=15831-15831msec
 WRITE: bw=64.9MiB/s (68.1MB/s), 64.9MiB/s-64.9MiB/s (68.1MB/s-68.1MB/s), io=1028MiB (1078MB), run=15831-15831msec

NFS host
Run status group 0 (all jobs):
 READ: bw=256MiB/s (268MB/s), 256MiB/s-256MiB/s (268MB/s-268MB/s), io=3068MiB (3217MB), run=11998-11998msec
 WRITE: bw=85.7MiB/s (89.8MB/s), 85.7MiB/s-85.7MiB/s (89.8MB/s-89.8MB/s), io=1028MiB (1078MB), run=11998-11998msec

27th Jun 2024 - Swiss PGDay

Back to square one... looking for a culprit
Troubleshooting GitLab issues

68

[2022-09-26 16:03:36.187 CEST][PID:163179][SID:6331b104.27d6b][DB:] LOG: automatic analyze of table "gitlab.public.project_authorizations" system
usage: CPU: user: 0.35 s, system: 0.44 s, elapsed: 47.54 s
[2022-09-26 16:04:06.221 CEST][PID:163566][SID:6331b14f.27eee][DB:] LOG: automatic analyze of table "gitlab.public.namespaces" system usage: CPU:
user: 0.50 s, system: 0.06 s, elapsed: 5.82 s
[2022-09-26 16:04:11.891 CEST][PID:163602][SID:6331b150.27f12][DB:gitlab] LOG: duration: 10063.487 ms bind <unnamed>:
/*application:web,correlation_id:01GDX1S9VENZ19H288EKTR10R5,db_config_name:main*/

fio benchmarking: https://docs.gitlab.com/ee/administration/operations/filesystem_benchmarking.html

fio --randrepeat=1 --ioengine=libaio --direct=1 --gtod_reduce=1 --name=test --bs=4k --iodepth=64 --readwrite=randrw
--rwmixread=75 --size=4G --filename=/path/to/git-data/testfile

Database host
Run status group 0 (all jobs):
 READ: bw=194MiB/s (203MB/s), 194MiB/s-194MiB/s (203MB/s-203MB/s), io=3068MiB (3217MB), run=15831-15831msec
 WRITE: bw=64.9MiB/s (68.1MB/s), 64.9MiB/s-64.9MiB/s (68.1MB/s-68.1MB/s), io=1028MiB (1078MB), run=15831-15831msec

NFS host
Run status group 0 (all jobs):
 READ: bw=256MiB/s (268MB/s), 256MiB/s-256MiB/s (268MB/s-268MB/s), io=3068MiB (3217MB), run=11998-11998msec
 WRITE: bw=85.7MiB/s (89.8MB/s), 85.7MiB/s-85.7MiB/s (89.8MB/s-89.8MB/s), io=1028MiB (1078MB), run=11998-11998msec

nfsio
stat

<inte
rval>

 <cou
nt> /

path/
to/mo

untpo
int

filer
:/pat

h/to/
expor

ted_v
olume

 moun
ted o

n /pa
th/to

/moun
tpoin

t:

 ops

/s
rpc b

klog

1440.

203

0.000

read:

ops/s

kB/s

kB/op

retra

ns avg
 RTT

(ms)
avg e

xe (m
s) a

vg qu
eue (

ms)

error
s

65.02

1
2328.

326

35.80
9

2 (0.
0%)

0.563

0.588

0.017

 1725
(0.0%

)

write
:

ops/s

kB/s

kB/op

retra

ns avg
 RTT

(ms)
avg e

xe (m
s) a

vg qu
eue (

ms)

error
s

52.91

9
1929.

263

36.45
7

201 (
0.0%)

1.318

5.998

4.673
54361

 (0.0
%)

27th Jun 2024 - Swiss PGDay

In the meantime…
Troubleshooting GitLab issues

69

…things were getting worse!

27th Jun 2024 - Swiss PGDay

In the meantime…
Troubleshooting GitLab issues

70

…things were getting worse!

27th Jun 2024 - Swiss PGDay

… triggering further attempts of mitigation
Troubleshooting GitLab issues

71

27th Jun 2024 - Swiss PGDay

...based on lateral measures
Troubleshooting GitLab issues

72

27th Jun 2024 - Swiss PGDay

...awareness started to come back
Troubleshooting GitLab issues

73

27th Jun 2024 - Swiss PGDay

Troubleshooting GitLab issues

74

…but with more diagnostic activity

\x
SELECT pid AS process_id,
 client_addr AS client_address,
 application_name,
 state,
 backend_start,
 state_change,
 now() - query_start AS query_age,
 now() - xact_start AS
transaction_age,
 backend_type
 wait_event_type,
 wait_event
FROM pg_stat_activity;
\watch 10

while true; do date;
 ps --ppid 12345 \
 -o pid,ppid,state,start,time,cmd,%mem,%cpu \
 --sort=-%cpu,state | \
 head -n 21;
 sleep 2;
done >> gitlab_processes.log

27th Jun 2024 - Swiss PGDay

Troubleshooting GitLab issues

75

… also came more FUDs

\x
SELECT pid AS process_id,
 client_addr AS client_address,
 application_name,
 state,
 backend_start,
 state_change,
 now() - query_start AS query_age,
 now() - xact_start AS
transaction_age,
 backend_type
 wait_event_type,
 wait_event
FROM pg_stat_activity;
\watch 10

while true; do date;
 ps --ppid 12345 \
 -o pid,ppid,state,start,time,cmd,%mem,%cpu \
 --sort=-%cpu,state | \
 head -n 21;
 sleep 2;
done >> gitlab_processes.log

27th Jun 2024 - Swiss PGDay

…which we had to analyze
Troubleshooting GitLab issues

76

27th Jun 2024 - Swiss PGDay

… explain and clarify
Troubleshooting GitLab issues

77

postgres=# select
pg_backend_pid();
 pg_backend_pid

 2018909
(1 row)
strace -p 2018909

27th Jun 2024 - Swiss PGDay

...while improving everything else
Troubleshooting GitLab issues

78

log_temp_files=<work_mem>

27th Jun 2024 - Swiss PGDay

...until one day everything was clear!
Troubleshooting GitLab issues

79

27th Jun 2024 - Swiss PGDay

...and the connection pooling testing started!
Troubleshooting GitLab issues

80

27th Jun 2024 - Swiss PGDay

● An MVCC primer (boring things everyone knows but it is worth refreshing)

● (ACID) Transactions, Isolation, Concurrency, Serializable Snapshot Isolation

● Connection scalability (showing the problem and its causes)

● Benchmarking & bottleneck analysis

● Troubleshooting GitLab issues (talking about that time when we all had a lot of fun)

● The journey to enlightenment

● The joy of enlightenment

● The great effects of connection pooling on connection scalability

Agenda

81

27th Jun 2024 - Swiss PGDay

Troubleshooting GitLab issues

82

27th Jun 2024 - Swiss PGDay

Troubleshooting GitLab issues

83

27th Jun 2024 - Swiss PGDay

What is PgBouncer?

Troubleshooting GitLab issues

84

A lightweight connection pooler for PostgreSQL
● “near” the application and/or “near” the database

PgBouncer modes:
● Session:

Assigns 1 client connection to a dedicated session,
supports all PostgreSQL features, default mode

● Transaction:
Creates a new connection for each transaction,
returning the connection to the pool when the
transaction is complete, break some features 1

● Statement:
Multi-statement transactions disallowed, enforce
“autocommit” mode on the client, mostly targeted at
PL/Proxy

1 https://www.pgbouncer.org/features.html

27th Jun 2024 - Swiss PGDay

Troubleshooting GitLab issues

85

PgBouncer Helm Chart
● Some existing implementations, but none of them are official nor supported by

GitLab.
Created our own
Contribution to GitLab

● Add CERN pgbouncer chart support (&39) · Epics · charts · GitLab
● Document how to integrate GitLab chart and CERN PGBouncer chart (#5527) ·

Issues · GitLab.org / charts / GitLab Chart · GitLab
● License and maintenance issues

“Click-and-go” for Kubernetes (Incl. monitoring)

GitLab at CERN integration
● Puma (app server) and Sidekiq (job dispatcher) going through PgBouncer
● Migrations not going through PgBouncer to avoid long-running transactions.
● 3 replicas (one per AVZ)

Implementation and integration

https://gitlab.com/groups/gitlab-org/charts/-/epics/39
https://gitlab.com/gitlab-org/charts/gitlab/-/issues/5527
https://gitlab.com/gitlab-org/charts/gitlab/-/issues/5527

27th Jun 2024 - Swiss PGDay

Troubleshooting GitLab issues

86

27th Jun 2024 - Swiss PGDay

Connection pooling
Troubleshooting GitLab issues

87

3 k
1.5 k

11.6 k

6.1 k

PgBouncer
on-air

27th Jun 2024 - Swiss PGDay

Connection pooling
Troubleshooting GitLab issues

88

3 k
1.5 k

11.6 k

6.1 k

27th Jun 2024 - Swiss PGDay

Troubleshooting GitLab issues

89

3 k
1.5 k

11.6 k

6.1 k

27th Jun 2024 - Swiss PGDay

Troubleshooting GitLab issues

90

27th Jun 2024 - Swiss PGDay

Connection pooling
Troubleshooting GitLab issues

91

3 k
1.5 k

11.6 k

6.1 k

27th Jun 2024 - Swiss PGDay

Troubleshooting GitLab issues

92

27th Jun 2024 - Swiss PGDay

Troubleshooting GitLab issues

93

Need some throttling?

27th Jun 2024 - Swiss PGDay

Throttling and Rate limits
Misuse and/or abuse from some users: Too many request – Error 429

● Infinite loops hammering the API: Set rate limit for reqs/sec
● Huge number of jobs triggered simultaneously: Rate limit for the maximum number of jobs triggered per

project
Use response headers to make your scripts smarter

Troubleshooting GitLab issues

94

https://docs.gitlab.com/ee/user/gitlab_com/#gitlabcom-specific-rate-limits
https://docs.gitlab.com/ee/user/admin_area/settings/user_and_ip_rate_limits.html#response-headers

27th Jun 2024 - Swiss PGDay

Troubleshooting GitLab issues

95

Final settings:
min_pool_size:100 x3=300
default_pool_size:140 x3=420
reserve_pool_size:18 x3= 54
total max pool size =474

27th Jun 2024 - Swiss PGDay

● An MVCC primer (boring things everyone knows but it is worth refreshing)

● (ACID) Transactions, Isolation, Concurrency, Serializable Snapshot Isolation

● Connection scalability (showing the problem and its causes)

● Benchmarking & bottleneck analysis

● Troubleshooting GitLab issues (talking about that time when we all had a lot of fun)

● The journey to enlightenment

● The joy of enlightenment

● The great effects of connection pooling on connection scalability

Agenda

96

27th Jun 2024 - Swiss PGDay

Connections scalability

97

A tpcb-like run with 800 pgbench clients, 6 threads, 100 trx/client

Hardly any increment!

210:800=0.26 tps/cl.
3.8 sec avg latency!!!

27th Jun 2024 - Swiss PGDay

Effects of connection pooling

98

pg12 with pgbouncer (client side) tpcb-like

3305:800=4.10 tps/client
vs

210:800=0.26 tps/client

Highest tps during tests 4-5000 (caching?)

27th Jun 2024 - Swiss PGDay

Removing the bottleneck

99

Improved snapshot scalability in PG14

Credits http://cern.ch/go/9WRh Andres Freund@MS

… but connection pooling is still needed

http://cern.ch/go/9WRh

27th Jun 2024 - Swiss PGDay

PgBouncer is a well known, flexible, reputable connection pooling software for
PostgreSQL with a small footprint, which has been around for a long time

Application owners can setup PgBouncer on their side ("near" the
application) to establish a connection pooling layer when accessing the

database with a significant number of connections or when the connections are
often and suddenly going up and down by a significant number

Client side connection pooling: fast

100

27th Jun 2024 - Swiss PGDay

Client side connection pooling: config

101

min_pool_size:100 x3=300
default_pool_size:140 x3=420
reserve_pool_size:18 x3= 54
total max pool size =474

min_pool_size:21 x3= 63
default_pool_size:94 x3=282
reserve_pool_size:18 x3= 54
total max pool size =336 Initially

Current

27th Jun 2024 - Swiss PGDay

PgBouncer secure authentication in DBOD
There are different ways to authenticate users in PgBouncer including:

● authentication query returning the password hash
● authentication file with known roles and their password (clear text/hash)

Superuser access to pg_shadow table would be required to get the hash

Secure auth setup: restricted login role + user_lookup function returning the
password hash (filtering privileged and special users)

Client side connection pooling: auth

102

27th Jun 2024 - Swiss PGDay

Client side connection pooling: auth

103

pg_hba.conf
hostssl all secure_auth_login all scram-sha-256

27th Jun 2024 - Swiss PGDay

Client side connection pooling: auth

104

27th Jun 2024 - Swiss PGDay

PostgreSQL connections scalability has been improved in
recent versions but, in some cases, to achieve satisfactory
results a connection pooling software is required and strongly
recommended. An helm chart provided by the community for
the community, would significantly facilitate the deployment
and the adoption of PgBouncer, particularly for applications
deployed with K8s.

Take home: connections scalability

105

27th Jun 2024 - Swiss PGDay

Depending on the usage pattern,
this seems to be of particular
importance for applications with an
OLTP/OLAP load – and especially
if they are deployed over multiple
nodes, containers, pods - and they
use more than a couple of
hundreds connections, mostly idle,
while opening/closing others.

Take home: connection pooling and K8s

106

27th Jun 2024 - Swiss PGDay

Long journey from…

From zero… to hero

107

To…

Maurizio De Giorgi | Solving PostgreSQL connection scalability: Insights from CERN’s GitLab Service

DB on Demand is hiring!

➡ early-career technician
➡ member (or associated) states individuals
➡ max two years of professional experience
➡ highest educational qualification by the application deadline:

secondary education diploma
➡ info and application

https://cern.ch/it-da-db-2024-105-grae

27th Jun 2024 108

That’s all folks!

27th Jun 2024 - Swiss PGDay - Solving PostgreSQL connection scalability: Insights from CERN’s GitLab Service

Maurizio De Giorgi
maurizio.degiorgi@cern.ch

Ismael Posada Trobo
ismael.posada.trobo@cern.ch

27th Jun 2024 - Swiss PGDay

Multi Version Concurrency Control

110

READ COMMITTED: a snapshot for each statement
REPEATABLE READ/SERIALIZABLE: a snapshot for 1st statement

Credits Hironobu SUZUKI@InterDB https://www.interdb.jp/pg/pgsql05.html

https://www.interdb.jp/pg/pgsql05.html

