TWWADI

"The Way We've Always Done It"

Kubernetes

threat? opportunity?

The CROSSROADS

Unleashing the Power of PostgreSQL in Kubernetes

Gabriele Bartolini VP, Cloud Native at EDB 28 June 2024

Gabriele Bartolini VP, Cloud Native at EDB

PostgreSQL user since ~2000 Ex 2ndQuadrant (co-founder) PostgreSQL Contributor DoK Ambassador DevOps evangelist Open source contributor

- Barman (2011) CloudNativePG (2022)

🐮 Blog: gabrielebartolini.it 🛛 @_GBartolini_

"Kubernetes has come a long way from "no way I would run a database on Kubernetes" to "I'm running databases at petabyte scale with automated rolling upgrades."" Michelle Au - Google Engineer, Kubernetes Storage

June 25, 2024

Agenda

- Kubernetes and T-shaped skills
- Introduction to CloudNativePG
- What changes for HA
- Quick Demo
- What changes for DR
- Conclusions

Kubernetes and T-shaped skills

The move to Kubernetes

- A decision made by CIOs and/or infrastructure teams
- Often assuming databases are left out of Kubernetes:
 - DBaaS (especially when there's no DBA in the organisation)
 - TWWADI (VMs and/or bare metal)
- DBAs have little influence in decision-making regarding Kubernetes adoption
 - Critical career crossroads: adopt it, avoid it (or deny it)
- **People** react differently to change, depending on the way it is introduced
 - Enthusiasm -> Opportunity
 - Fear (of losing your job) -> Threat and rejection (TWWADI)
- The best time for a DBA to approach Kubernetes is now

Breaking the silos

Figure 8.3: Skills Have Shapes

soonersaferhappier.com

"Slowification", Simplification, Amplification

Kubernetes is a way to simplify complex IT problems through modularisation

 ∞

WEVD 2024 - ALL RIGHTS RESERVED.

Kubernetes Just Turned Ten: Where Does PostgreSQL Stand?

Recommended reading from gabrielebartolini.it

Kubernetes vs Virtual Machines

Kubernetes

Infrastructure and containerised apps Containers share the same OS Immutable Application Containers Portable on any cloud, standard Day 2 operations on applications

VMs

Operating systems VMs have their own OS Mutable ("dnf update") Indirectly portable (Day 1, Terraform) No Day 2 operations on applications

"The status of the entire Kubernetes cluster intrinsically defines an organisation's infrastructure at any given time, including applications"

From infrastructure to applications

Fundamental concepts for DBAs to better understand Kubernetes

- Region (Kubernetes Cluster)
- Data Centre (Availability Zone)

- Storage:
 - Network vs Local
- Nodes:
 Container Storage Interface (CSI)

 Lin
 Single authority for all applications
 ss Resource

 VM
 (Postgres included)
 ls):

 Network
 Interpretations
 resource
 - The Service resource

- Databases are applications
 - The Operator pattern
 - Custom Resources

Regarding databases, Kubernetes' standard resources are not sufficient.

However, one of the strengths of Kubernetes is the operator pattern, a development pattern designed to manage complex applications like a PostgreSQL database.

Run PostgreSQL. The Kubernetes way.

Introduction to CloudNativePG

The history of CloudNativePG

Bringing PostgreSQL to Kubernetes (not Kubernetes to PostgreSQL)

2019-2020: The 2ndQuadrant era

- MVP (fail-fast)
- Cloud Native BDR
- Cloud Native PostgreSQL

2021-2022: EDB Cloud Native PostgreSQL

- Production ready (IBM Cloud Pak)
- Several features gradually introduced
 - HA + DR
 - Observability
 - Security
 - Pooling
 - ...

2022-: CloudNativePG Revolution

- Launched in May 2022
- Consistent commitment from EDB
 - 9 releases in 2 years
 - 3.2k commits
 - 100+ contributors, 260 forks
- Major features:
 - Declarative Fencing (2022)
 - Volume for WALs
 - Failover of physical Replication Slots
 - Backup from a Standby (2023)
 - Declarative Hibernation
 - Declarative Role Management
 - Volumes for Tablespaces
 - Volume Snapshot backup and recovery

Star History

Star History

About CloudNativePG

- "Level 5", Production ready
 - EDB Big Animal, IBM Cloud Pak, Google Cloud, Tembo, ...
- Open source (May 2022)
 - Apache License 2.0
 - Vendor neutral, openly governed, always free
 - Originally created by EDB (2019 by 2ndQuadrant)
- Multiple installation methods:
 - K8s manifests
 - Helm chart
 - OperatorHub.io (OLM)
- Most popular Postgres operator in 2023 (TimeScale survey)
- 3.7k stars and 51M downloads on Github (2 years)

CloudNativePG

github.com/cloudnative-pg

CloudNativePG's 4 Pillars

More than an operator, it's a "Kubernetes native database"

Seamless Kubernetes API Integration

Unlock the power of the Kubernetes API to effortlessly manage PostgreSQL databases. Utilize the operator pattern and leverage standard resources for streamlined operations.

Advanced Observability

Gain crucial insights through integrated monitoring and logging, enhancing diagnostics for operations, supporting strategic decision-making, and empowering autopilot control.

Declarative Configuration

Deploy, scale, and maintain databases using automation that optimizes operational workflows and facilitates Infrastructure as Code.

Secure by Default

Safeguard your sensitive data with robust security protocols and industry-leading features across all layers, including source code, containers, Kubernetes clusters, and the cloud.

The PostgreSQL community debates ALTER SYSTEM

April 2024: "Sometimes the smallest patches create the biggest discussions"

My contribution to PostgreSQL 17 thanks to Jelte Fennema-Nio and Robert Haas

What changes for HA

The PostgreSQL `Cluster` resource

apiVersion: postgresql.cnpg.io/vl

kind: Cluster

metadata:

name: swiss-pgday-24

spec:

instances: 3

minSyncReplicas: 1

maxSyncReplicas: 1

affinity:

nodeSelector:

workload: postgres

storage:

size: 40Gi

walStorage:

size: 10Gi

Highly Available PostgreSQL Cluster

Automated failover (HA with very low RTO)

Quick Demo

Questions on the demo

What changes for DR

Continuous backup

Guaranteed RPO from the first available backup to the latest archived WAL

WAL archive

- Currently only via object store (Barman Cloud)
- WAL files are archived every 5 minutes maximum (RPO <= 5 min)

Physical base backups

- From the primary or a standby
- Scheduled or on demand
- On object stores (Barman Cloud)
 - Hot (online)
- As Kubernetes Volume Snapshots
 - Hot (online) and cold (offline)
 - Transparent incremental/differential backup

Future: generic plug-in interface (CNPG-I)

Scan here to watch "Disaster Recovery with Very Large Postgres Databases by me and Michelle Au **KubeCon NA 2023 - Chicago**

Continuous backup

PostgreSQL Cluster

1

Continuous backup

WAL Archive

Backup catalog

Scan here to watch "Disaster Recovery with Very Large Postgres Databases by me and Michelle Au **KubeCon NA 2023 - Chicago**

Recovery

Full or to a specific point

Bootstrap method

- Copy from an available physical base backup
- Apply WAL files (REDO logs) until you reach the target

Full recovery

- Without a target (until the end of the WAL)
- Can be used to setup a physical replica
 - Replica cluster, even delayed
 - "Continuous recovery"

Point-In-Time Recovery

- Up to a given time or transaction
- When reaching the target, the cluster promotes itself

Scan here to watch "Disaster Recovery with Very Large Postgres Databases by me and Michelle Au **KubeCon NA 2023 - Chicago**

Full recovery or PITR

PostgreSQL is promoted when the recovery target is reached

> PostgreSQL Cluster

Continuous backup

WAL Archive

Backup catalog

 ∞

Replica Cluster (for DR or Reporting)

PostgreSQL remains in continuous recovery (read-only replica)

Replica clusters: beyond the K8s cluster SPoF

Production cluster in a 3+ AZ Kubernetes cluster

Symmetric architecture on 2 Kubernetes clusters

Controlled failover across Kubernetes clusters

Beyond the two Kubernetes clusters / regions

Cascading deployments over multiple regions for world class resilience

Making the world my single point of failure with PostgreSQL

Recommended reading from gabrielebartolini.it

Distributed topology configuration (upcoming 1.24)

apiVersion: postgresql.cnpg.io/v1

kind: Cluster

metadata:

name: pg16-eu-central

spec:

<snip> externalClusters:

- name: pg16-eu-central

barmanObjectStore:

```
destinationPath: s3://pg16-eu-central/
```

...

- name: pg16-eu-western

barmanObjectStore:

```
destinationPath: s3://pg16-eu-western/
```

...

replica:

```
primary: pg16-eu-central
```

source: pg16-eu-western

Conclusions

PostgreSQL on Kubernetes (Opportunity) PostgreSQL on VMs PostgreSQL on Bare Metal

Change is happening now

Time to catch the wave and build T-skills on Kubernetes

- Running Postgres in Kubernetes is different from running it outside
- CloudNativePG manages HA clusters, not instances
- You don't need to know all Kubernetes (like with Linux):
 - CloudNativePG, Basic Kubernetes resources, Storage, Network basics
- Differences are primarily in the way we interact with a Cluster
 - Deployment, Configuration, Monitoring, Alerting, Logging, Access, ...
- It is still the same PostgreSQL you know inside
- Your skills (and yours only) are needed to improve running Postgres in Kubernetes
- At the crossroads, choose the Postgres in Kubernetes way
- Join CloudNativePG NOW and meet other DBAs on the same journey!

Long live the Postgres DBA

